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Unified projection operator formalism in nonequilibrium statistical mechanics
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Department of Electronic Engineering, Faculty of Engineering, Yamanashi University, Takeda-4, Yamanashi 400, Japan

and Department of Physics, Faculty of Science, Ochanomizu University, Bunkyo-ku, Tokyo 112, Japan
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The method of projection operators, which plays an important role in the field of nonequilibrium statistical
mechanics, has been established with the use of the Liouville–von Neumann equation for a density matrix to
eliminate irrelevant information from a whole system. We formulate a unified and general projection operator
method for dynamical variables. The main features of our formalism parallel those for the Liouville–von
Neumann equation. ~1! Two types of basic equations, time-convolution and time-convolutionless decompo-
sitions, are systematically obtained without specifying a projection operator.~2! Expansion formulas for both
decompositions are also obtained.~3! Problems incorporating a time-dependent Liouville operator can be
flexibly treated. We apply the formulas to problems in random frequency modulation and low field resonance.
In conclusion, our formalism yields a more direct and easier means of determining the average time evolution
of an operator than the one for the Liouville–von Neumann equation.@S1063-651X~99!07009-9#

PACS number~s!: 05.30.2d, 05.10.Gg, 03.65.Ca, 02.50.Ey
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I. INTRODUCTION

The relaxation dynamics of nonequilibrium systems ha
often been studied with models that have the system of
terest in contact with a reservoir. A typical example is t
phenomenon of nuclear magnetic~or spin! relaxation. NMR
and muon spin resonance-relaxation-rotation~mSR! spectra
are often analyzed on the assumption that the relaxation
cess is caused by random perturbations from the envi
ment around a relevant spin. The environment is suppose
be a reservoir that is large enough to be kept in an equ
rium state of constant temperature. Simple models of
kind allow us to analyze relaxation processes in a system
manner.

In recent years, intensive experimental studies of NM
andmSR have been carried out with the aim of clarifying t
basic structure and characteristics of various materials
particular, an increasing number of experiments for this p
pose have been conducted in low or zero magnetic fie
@1–10#. When the applied field is weak, we have to take fu
into account the interaction between the relevant spin and
environment. In other words, we cannot neglect higher
ders of perturbation. For this reason, a systematic metho
evaluating the effects of perturbations up to infinite order
necessary.

The projection operator method has demonstrated its
fulness in eliminating irrelevant information from a syste
and extracting only the information that is desired or relev
@11#. This is usually done with the use of the Liouville–vo
Neumann equation for a density matrix. The method w
formulated in a straightforward way, and can be readily m
nipulated to derive a basic equation for the relevant~or nec-
essary! parts of the density matrix@12–15#. Because the
equation thus obtained includes a time-convolution term
flecting a memory effect, it is called a time-convolution~TC!
equation in this paper. Although the TC equation was lo
considered unique, systematic methods of obtaining n
types of time-convolutionless~TCL! equations were derived
by renormalizing the memory kernel@16,17#. Earlier work
PRE 601063-651X/99/60~3!/2636~15!/$15.00
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and related papers on this subject deserve attention@18–22#.
Expansion formulas have also been systematically deri
@23,24#. The characteristic features of the formalism are
follows: ~i! we need not specify the projection operator;~ii !
problems with a time-dependent Liouville operator can a
be addressed;~iii ! a systematic formalism for derivation of
basic equation is established; and~iv! the original Liouville–
von Neumann equation can be readily substituted by o
basic equations, e.g., the Fokker-Planck equation@23,25#. It
is possible to apply this formalism to nuclear magnetic~or
spin! relaxation phenomena in weak~or zero! applied fields.
However, long and complicated calculations are still
quired even if only a certain averaged quantity is desi
@26#.

To find a way out of this difficulty, focus was placed o
the Heisenberg equation of motion, in which dynamic va
ables evolve directly with time. Since the temporal evoluti
of dynamic variables in these equations is determined by
Hamiltonian for the entire system, the projection proced
faces another kind of difficulty. This is because we mu
separate the systematic and fluctuating parts of the Hei
berg equation of motion even though we need an equa
for the observables that evolve temporally with the Ham
tonian for the whole system. This difficulty has been ov
come by Mori and Tokuyama and Mori. Specifying the pr
jection operator, Mori has derived a TC equation@27# for a
dynamic variable based on the Heisenberg equation of
tion, and Tokuyama and Mori have proposed a TCL equat
@28#. Additional derivations of the basic equations also d
pend on the choice of projection operator@29,30#, and/or a
seemingly arbitrary step that is performed to obtain a ba
identity for a dynamic variable@28,30–32#. In other words,
the projection operator method for the Heisenberg equa
of motion cannot yet be fully characterized by the four poin
mentioned above.

Thus, our purpose in this paper is twofold: one is to p
pose a systematic and natural formalism for the Heisenb
equation of motion without specifying a projection operat
thus yielding a procedure paralleling that for the Liouville
2636 © 1999 The American Physical Society
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von Neumann equation; the other is to set out explicit exp
sion formulas for the Heisenberg equation of motion whi
again, are derived through a procedure that parallels the
proach for the Liouville–von Neumann equation. We th
apply this formalism to actual problems of random frequen
modulation and low field resonance in a quantum envir
ment; for the former, our calculations yield an exact res
and for the latter, which is a difficult problem for which t
obtain solutions, we present explicit calculations for seve
finite orders of perturbation as an example of our formul

This paper is organized as follows. The foundations of
formulation are laid down in Sec. II. Basic equations of o
systematic formalism for the Heisenberg equation of mot
are derived in Sec. III. We compare the formalism for t
Heisenberg equation of motion with that for the Liouville
von Neumann equation in Sec. IV. Expansion formulas
presented in Sec. V. They are then applied to a mode
random frequency modulation in Sec. VI, and to a mode
low field resonance in a quantum environment in Sec. V
Established results for the Liouville–von Neumann equat
based on this method are briefly summarized in Append
A and B. Relationships between projection operators are
cussed in Appendix C, and the characteristic features of
quantum environment applied in Sec. VII are defined in A
pendix D. A preliminary outline of this paper has been pu
lished @33#.

II. PRELIMINARIES

Let us consider the density operatorW(t) which evolves
in time according to the Liouville–von Neumann equation

Ẇ~ t !52 iL~ t !W~ t !, ~2.1!

where

L~ t !•5
1

\
@H~ t !,•#. ~2.2!

We assume that the total HamiltonianH(t) consists of an
unperturbed partH0 and a time-dependent perturbatio
H1(t) giving the Liouville operator of the form

L~ t !•5@L01L1~ t !#•. ~2.3!

Equation~2.1! is formally solved to give

W~ t !5U1~ t,t0!W~ t0!, ~2.4!

where we definedU1(t,t0) as

U1~ t,t0![T1@e2* t0

t dt8 iL~ t8!#. ~2.5!

In Eq. ~2.5!, the symbolT1 indicates an increasing tim
ordering from the right to the left. Extracting the unperturb
part from the time evolution operatorU1(t,t0), we obtain

U1~ t,t0!5e2 iL0~ t2t0!Û1~ t,t0!, ~2.6!

where
-
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Û1~ t,t0![T1FexpS 2E
t0

t

dt8i L̂1~ t8! D G ~2.7!

and

L̂1~ t !5eiL0~ t2t0!L1~ t !e2 iL0~ t2t0!. ~2.8!

Noting a rule of a trace operation for two operatorsX andY,
Tr(XY)5Tr(YX), we find a mean value of an operatorA in
two different ways:

^A& t5Tr AW~ t !5Tr W~ t0!A~ t ![^A~ t !&, ~2.9!

where

A~ t !5U2~ t,t0!A, ~2.10!

with

U2~ t,t0![T2FexpS E
t0

t

dt8iL~ t8! D G . ~2.11!

In the above expression, the symbolT2 indicates an increas
ing time ordering from the left to the right. For later conv
nience, we rewriteU2(t,t0) as @see Eq.~2.6!#

U2~ t,t0!5Û2~ t,t0!eiL0~ t2t0!, ~2.12!

where we defined

Û2~ t,t0![T2FexpS E
t0

t

dt8i L̂1~ t8! D G . ~2.13!

When the unperturbed part is solved in the form

eiL0~ t2t0!A5 f ~ t,t0!A, ~2.14!

where f (t,t0) is a c-number function, time evolution of the
operatorA(t) is determined to be

A~ t !5 f ~ t,t0!Â~ t !, ~2.15!

with

Â~ t ![Û2~ t,t0!A. ~2.16!

Most of the existing projection operator methods use
time evolution operatorÛ1(t,t0). We call them Schro¨dinger
picture ~SP! formalisms. In the following, we develop
method of projection operator based onÛ2(t,t0) and call it
the Heisenberg picture~HP! formalism. We use different
projection operator symbols for each picture: the project
operator used in the Heisenberg picture is calledP and the
one in the Schro¨dinger picture isP̃. We discuss a relation
betweenP and P̃ in AppendixC.

III. BASIC DECOMPOSITION FORMULAS

In this section, we develop a projection operator meth
for Û2(t,t0) and give the basic equations in the HP. Tim
evolution of the operatorÛ2(t,t0) is determined by

]

]t
Û2~ t,t0!5Û2~ t,t0!i L̂1~ t !. ~3.1!
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Comparing Eq.~3.1! with the equation forÛ1(t,t0), Eq.
~A1!, we find a reversed order of the operatorL̂1(t) in the
right hand side of the equations. Due to the difference,
can formulate a projection operator method@33#.

We use a projection operatorP in order to eliminate ir-
relevant variables. The operatorP must satisfy an idempo
tent relation,P25P. Operating the projection operatorP and
Q(512P) in Eq. ~3.1! from the right, we obtain

d

dt
x̂2~ t !5 x̂2~ t !i L̂1~ t !P1 ŷ2~ t !i L̂1~ t !P, ~3.2!

d

dt
ŷ2~ t !5 x̂2~ t !i L̂1~ t !Q1 ŷ2~ t !i L̂1~ t !Q, ~3.3!

where we set

x̂2~ t !5Û2~ t,t0!P ~3.4!

and

ŷ2~ t !5Û2~ t,t0!Q. ~3.5!

(i) Time-convolution decomposition.Equation ~3.3! is
solved to give

ŷ2~ t !5Qû2~ t,t0!1E
t0

t

dt x̂2~t!i L̂1~t!Qû2~ t,t!, ~3.6!

where

û2~ t,t!5T2FexpS E
t

t

dt8i L̂1~t8!QD G . ~3.7!

With the use of Eqs.~3.2! and ~3.6!, we have a time-
convolution type of decomposition:

d

dt
x̂2~ t !5 x̂2~ t !i L̂1~ t !P

1E
t0

t

dt x̂2~t!i L̂1~t!Qû2~ t,t!i L̂1~ t !P

1Qû2~ t,t0!i L̂1~ t !P. ~3.8!

For actual problems, almost all ofP satisfies the relation
PA5A. Then we have, from Eqs.~2.16!, ~3.4!, and the con-
dition PA5A,

x̂2~ t !A5Û2~ t,t0!PA5Â~ t !. ~3.9!

Thus Eq.~3.8! gives

d

dt
Â~ t !5 x̂2~ t !i L̂1~ t !A

1E
t0

t

dt x̂2~t!i L̂1~t!Qû2~ t,t!i L̂1~ t !A

1Qû2~ t,t0!i L̂1~ t !A ~3.10!

for a dynamic variableÂ(t).
e

(ii) Time-convolutionless decomposition.Since we have
the following relation:

x̂2~t!5Û2~t,t0!P5Û2~ t,t0!~P1Q!Û1~ t,t!P
5 x̂2~ t !Û1~ t,t!P1 ŷ2~ t !Û1~ t,t!P, ~3.11!

Eq. ~3.6! is rewritten as

ŷ2~ t !5Qû2~ t,t0!1$x̂2~ t !1 ŷ2~ t !%

3E
t0

t

dtÛ1~ t,t!Pi L̂1~t!Qû2~ t,t!. ~3.12!

We solve Eq.~3.12! for ŷ2(t):

ŷ2~ t !5@Qû2~ t,t0!2 x̂2~ t !~Q̂2~ t !2121!#Q̂2~ t !, ~3.13!

with

Q̂2~ t !5S 12E
t0

t

dtÛ1~ t,t!Pi L̂1~t!Qû2~ t,t! D 21

. ~3.14!

Thus, from Eqs.~3.2! and ~3.13!, we have a time-
convolutionless type of decomposition of the form

d

dt
x̂2~ t !5 x̂2~ t !i L̂1~ t !P2 x̂2~ t !$12Q̂2~ t !% i L̂1~ t !P

1Qû2~ t,t0!Q̂2~ t !i L̂1~ t !P. ~3.15!

Then the conditionPA5A gives

d

dt
Â~ t !5 x̂2~ t !i L̂1~ t !A2 x̂2~ t !$12Q̂2~ t !% i L̂1~ t !A

1Qû2~ t,t0!Q̂2~ t !i L̂1~ t !A ~3.16!

for a dynamic variableÂ(t).

IV. TRANSCRIPTION RULES

Comparing basic formulas for the HP derived in Sec.
with the corresponding ones for the SP in Appendix A, w
can deduce the following rules: In converting from the HP
the SP or vice versa, we are only to apply the following ru
to the basic equations.

Rule 1.The constituent operators are replaced by

HP

i L̂1~ t !
P

J ↔H SP

2 i L̂1~ t !

P̃
. ~4.1!

Rule 2.Order of the constituent operators is reversed
follows:

HP

i L̂1~ t !Q
T2@e*t

t dt8 i L̂1~t8!Q#
J ↔H SP

2Q̃i L̂1~ t !

T1FexpS E
t

t

dt8Q̃„2 i L̃1~t8!…D G .
~4.2!

These also yield the following replacements:



to
E

o

w
n

n

r
der
n
ly,
m

en

PRE 60 2639UNIFIED PROJECTION OPERATOR FORMALISM IN . . .
HP
x̂2~ t !
û2~ t,t0!

J ↔H SP
x̂1~ t !
û1~ t,t0!

. ~4.3!

A simple example may serve for illustration: According
these rules, the second term in the right hand side of
~3.8!,

E
t0

t

dt x̂2~t!i L̂1~t!Qû2~ t,t!i L̂1~ t !P, ~4.4!

is transformed into

E
t0

t

dt P̃„2 i L̂1~ t !…û1~ t,t!Q̃„2 i L̃1~t!…x̂1~t!. ~4.5!

This is nothing but the second term in the right hand side
Eq. ~A8!.

V. EXPANSION FORMULAS

In order to apply the above method to actual problems,
derive a new type of cumulants by expanding the TC a
TCL type decompositions.

(i) TC decomposition. For the TC type decompositio
~3.10!,

d

dt
Â~ t !5Û2~ t,t0!Pi L̂1~ t !A1E

t0

t

dt K̂2~ t,t!A1Ĵ2~ t !,

~5.1!

with

K̂2~ t,t![Û2~t,t0!Pi L̂1~t!Qû2~ t,t!i L̂1~ t ! ~5.2!

and

Ĵ2~ t ![Qû2~ t,t0!i L̂1~ t !A, ~5.3!

we expandû2(t,t) in Eqs.~5.2! and ~5.3! as follows:

E
t0

t

dt K̂2~ t,t!5E
t0

t

dt1 Û2~ t1 ,t0!P F̂2,2~ t,t1!

1 (
n53

` E
t0

t

dt1E
t0

t1
dt2¯E

t0

tn22
dtn21

3Û2~ tn21 ,t0!P F̂2,n~ t,t1 ,...,tn22 ,tn21!,

~5.4!

where

F̂2,2~ t,t1!5 i L̂1~ t1!Qi L̂1~ t !, ~5.5!

F̂2,n~ t,t1 ,...,tn22 ,tn21!

5 i L̂1~ tn21!Qi L̂1~ tn22!¯Qi L̂1~ t1!Qi L̂1~ t ! ~n>3!

~5.6!

and
q.

f

e
d

Ĵ2~ t !5S Qi L̂1~ t !1E
t0

t

dt1 QF̂22,~ t,t1!

1 (
n53

` E
t0

t

dt1E
t0

t1
dt2¯E

t0

tn22
dtn21

3QF̂2,n~ t,t1 ,...,tn22 ,tn21!D A. ~5.7!

In Eqs.~5.4! and~5.7!, we find almost the same structure fo
F̂2,n(t) as the one for the SP except the chronological or
@see Eqs.~B4! and ~B7!#. When we represent the projectio
operatorP as an appropriate averaging operation, name
P•[^^•&&, we naturally obtain new cumulants and call the
‘‘antipartial cumulants’’~APC!, denoting them as

P F̂2,n~ t,t1 ,...,tn22 ,tn21!

[^ i L̂1~ tn21!i L̂1~ tn22!¯ i L̂1~ t !&APC ~n>2!. ~5.8!

For instance, the lower order cumulants are explicitly giv
by

^ i L̂1~ t1!i L̂1~ t !&APC5Pi L̂1~ t1!Qi L̂1~ t !

5^^ i L̂1~ t1!i L̂1~ t !&&

2^^ i L̂1~ t1!&&^^ i L̂1~ t !&& ~5.9!

and

^ i L̂1~ t2!i L̂1~ t1!i L̂1~ t !&APC

5Pi L̂1~ t2!Qi L̂1~ t1!Qi L̂1~ t !

5^^ i L̂1~ t2!i L̂1~ t1!i L̂1~ t !&&2^^ i L̂1~ t2!i L̂1~ t1!&&

3^^ i L̂1~ t !&&2^^ i L̂1~ t2!&&^^ i L̂1~ t1!i L̂1~ t !&&

1^^ i L̂1~ t2!&&^^ i L̂1~ t1!&&^^ i L̂1~ t !&&. ~5.10!

(ii) TCL decomposition. Next, we treat Eq.~3.16!, i.e.,

d

dt
Â~ t !5Ĉ2~ t !A1 Ĵ2~ t !, ~5.11!

where

Ĉ2~ t !5Û2~ t,t0!P Q̂2~ t !i L̂1~ t ! ~5.12!

and

Ĵ2~ t !5Qû2~ t,t0!Q̂2~ t !i L̂1~ t !A. ~5.13!

We find the first term of Eq.~5.11! in the form

Ĉ2~ t !5Û2~ t,t0! (
n50

`

P„ŝ2~ t !…ni L̂1~ t !

[Û2~ t,t0! (
n51

`

Ĉ2,n~ t !, ~5.14!
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where we definedŝ2(t) by

ŝ2~ t ![E
t0

t

dt Û1~ t,t!Pi L̂1~t!Qû2~ t,t!. ~5.15!

Then, the lower order terms of the expansion are given

Ĉ2,1~ t !5Pi L̂1~ t !, ~5.16!

Ĉ2,2~ t !5E
t0

t

dt1 Pi L̂1~ t1!Qi L̂1~ t !

5E
t0

t

dt1$^^ i L̂1~ t1!i L̂1~ t !&&2^^ i L̂1~ t1!&&

3^^ i L̂1~ t !&&%, ~5.17!

Ĉ2,3~ t !5E
t0

t

dt1E
t0

t1
dt2$Pi L̂1~ t2!Qi L̂1~ t1!Qi L̂1~ t !

2Pi L̂1~ t1!Pi L̂1~ t2!Qi L̂1~ t !%

5E
t0

t

dt1E
t0

t1
dt2$^^ i L̂1~ t2!i L̂1~ t1!i L̂1~ t !&&

2^^ i L̂1~ t2!i L̂1~ t1!&&^^ i L̂1~ t !&&

2^^ i L̂1~ t2!&&^^ i L̂1~ t1!i L̂1~ t !&&

2^^ i L̂1~ t1!&&^^ i L̂1~ t2!i L̂1~ t !&&

1^^ i L̂1~ t2!&&^^ i L̂1~ t1!&&^^ i L̂1~ t !&&

1^^ i L̂1~ t1!&&^^ i L̂1~ t2!&&^^ i L̂1~ t !&&%. ~5.18!

Comparing these lower order terms with the ones for SP,
find reversed chronological order terms in contrast with
‘‘ordered cumulant’’ in the SP@see Eqs.~B17!–~B19!#. Thus
we introduce new cumulants called ‘‘antiordered cum
lants’’ ~AOC!, denoted by

Ĉ2,1~ t ![^ i L̂1~ t !&AOC, ~5.19!

Ĉ2,2~ t ![E
t0

t

dt1^ i L̂1~ t !i L̂1~ t1!&AOC, ~5.20!

Ĉ2,n~ t ![E
t0

t

dt1E
t0

t1
dt2¯E

t0

tn22
dtn21

3^ i L̂1~ tn21!¯ i L̂1~ t !&AOC ~n>3!.

~5.21!
e
e

-

VI. RANDOM FREQUENCY MODULATION

In this section, we apply the above method to a mode
random frequency modulation~the so-called Kubo-Anderson
model! @34–37#.

Let us consider a system whose time evolution is de
mined by the Hamiltonian

H~ t !5H01H1~ t !5\@v01v1~ t !#a†a, ~6.1!

wherea† (a) is a boson creation~annihilation! operator. We
assume thatv0 in Eq. ~6.1! is constant and a random~angu-
lar! frequencyv1(t) is governed by a stationary stochas
Gaussian-Markoffian process characterized by

^v1~ t !&B50, ~6.2!

and

^v1~ t !v1~ t1!&B5D0
2e2ut2t1u/tc, ~6.3!

where the amplitude of modulation is denoted byD0 , tc
being the characteristic time of the process. In Eqs.~6.2! and
~6.3!, we used a symbol̂...&B as an averaging procedur
over the stochastic process ofv1(t). This model describes
time evolution of a boson field~for instance, a single mode
of quantized electromagnetic field! under a random perturba
tion from its environment. When we replacea†a by a spin
operatorSz , this model describes a spin relaxation proce
under an adiabatic perturbation.

In order to analyze time evolution of the system, we wa
to obtain a differential equation of an average of annihilat
operatorâ(t) in terms of the TC and TCL decompositions

(i) TC decomposition. With the use of Eqs.~5.1! and
~6.1!, we find the following equation:

d

dt
â~ t !52 i ^v1~ t !&Bâ~ t !1 (

n52

`

Ĵ2,n~ t !1 (
n51

`

Ĵ2,n~ t !.

~6.4!

The lower order terms ofĴ2,n andĴ2,n are explicitly given
by

Ĵ2,2~ t !5E
t0

t

dt1Û2~ t1 ,t0!^ i L̂1~ t1!i L̂1~ t !&APC a

5~2 i !2E
t0

t

dt1$^v1~ t !v1~ t1!&B

2^v1~ t !&B^v1~ t1!&B%â~ t1!, ~6.5!
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Ĵ2,3~ t !5E
t0

t

dt1E
t0

t1
dt2 Û2~ t2 ,t0!

3^ i L̂1~ t2!i L̂1~ t1!i L̂1~ t !&APC a

5~2 i !3E
t0

t

dt1E
t0

t1
dt2$^v1~ t !v1~ t1!v1~ t2!&B

2^v1~ t !&B^v1~ t1!v1~ t2!&B

2^v1~ t !v1~ t1!&B^v1~ t2!&B

1^v1~ t !&B^v1~ t1!&B^v1~ t2!&B%â~ t2!, ~6.6!

Ĵ2,1~ t !5Qi L̂1~ t !a5~2 i !@v1~ t !2^v1~ t !&B#a, ~6.7!
ce
e
f

d

n
-

Ĵ2,2~ t !5E
t0

t

dt1QF̂2,2~ t1 ,t !a5~2 i !2E
t0

t

dt1$v1~ t !v1~ t1!

2^v1~ t !v1~ t1!&B2^v1~ t !&Bv1~ t1!

1^v1~ t !&B^v1~ t1!&B%a. ~6.8!

When we average Eq.~6.4! over the whole system and us

the relations~6.2! and ~6.3!, all terms ofĴ2,n and the odd

terms ofĴ2,n disappear. Thus only the even terms ofĴ2,n

contribute to time evolution of an average of the annihilati
operator̂ â(t)&:
d

dt
^â~ t !&5~2 i !2D0

2E
t0

t

dt1 j1~ t2t1!^â~ t1!&1~2 i !4D0
4E

t0

t

dt1E
t0

t1
dt2E

t0

t2
dt3 2j1~ t2t1!j2~ t12t2!j1~ t22t3!^â~ t3!&

1~2 i !6D0
6E

t0

t

dt1E
t0

t1
dt2E

t0

t2
dt3E

t0

t3
dt4E

t0

t4
dt5$6j1~ t2t1!j2~ t12t2!j3~ t22t3!j2~ t32t4!j1~ t42t5!

14j1~ t2t1!j2~ t12t2!j1~ t22t3!j2~ t32t4!j1~ t42t5!%^â~ t5!&1¯ , ~6.9!
where we definedjn(t) by

jn~ t ![e2nt/tc. ~6.10!

Since we find a convolution type of integrals, Lapla
transform of Eq.~6.9! gives us a series of successive alg
braic equations. That is, defining the Laplace transform o
function f (t) by

f @s#5E
0

`

dt f~ t !e2st, ~6.11!

we can solve Eq.~6.9! as follows:

^â@s#&5
^â~0!&

s2S1@s#
, ~6.12!

where we sett050 andS1@s# is written successively by the
relation

Sn@s#[
n~2 iD0!2

jn
21@s#2Sn11@s#

, ~6.13!

with

jn@s#[
1

s2n/tc
. ~6.14!

Namely,^â@s#& is solved in terms of the form of a continue
fraction, which agrees with the known result@37#.

(ii) TCL decomposition.When we apply the expansio
formula ~5.11! of TCL decomposition to the model of ran
dom frequency modulation, we have
-
a

d

dt
â~ t !52 i ^v1~ t !&B â~ t !1 (

n52

`

Ĝ2,n~ t !1 (
n51

`

Ĵ2,n~ t !.

~6.15!

The lower order terms ofĜ2,n and Ĵ2,n are explicitly given
by

Ĝ2,2~ t !5Û2~ t,t0!E
t0

t

dt1^ i L̂1~ t1!i L̂1~ t !&AOC a

5~2 i !2E
t0

t

dt1$^v1~ t !v1~ t1!&B

2^v1~ t !&B^v1~ t1!&B%â~ t !, ~6.16!

Ĝ2,3~ t !5Û2~ t,t0!E
t0

t

dt1E
t0

t1
dt2

3^ i L̂1~ t2!i L̂1~ t1!i L̂1~ t !&AOC a

5~2 i !3E
t0

t

dt1E
t0

t1
dt2$^v1~ t !v1~ t1!v1~ t2!&B

2^v1~ t !&B^v1~ t1!v1~ t2!&B

2^v1~ t !v1~ t1!&B^v1~ t2!&B2^v1~ t !v1~ t2!&

3^v1~ t1!&1^v1~ t !&B^v1~ t1!&B^v1~ t2!&B

1^v1~ t !&B^v1~ t2!&B^v1~ t1!&B%â~ t !, ~6.17!

Ĵ2,1~ t !5Qi L̂1~ t !a5~2 i !@v1~ t !2^v1~ t !&B#a,
~6.18!
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Ĵ2,2~ t !5E
t0

t

dt1QF̂2,2~ t1 ,t !a

5~2 i !2E
t0

t

dt1$v1~ t !v1~ t1!2^v1~ t !v1~ t1!&B

2^v1~ t !&Bv1~ t1!1^v1~ t !&B^v1~ t1!&B%a. ~6.19!

Averaging Eq.~6.15! over the whole system, and using Eq
~6.2! and ~6.3!, we find

d

dt
^â~ t !&52E

t0

t

dt1^v1~ t !v1~ t1!&B^â~ t !&, ~6.20!

since the relevant cumulants higher than the third order
Ĵ2 disappear@24#. Thus Eq. ~6.20! is solved to give (t0
50)

^â~ t !&5e2D0
2*0

t dt1*
0

t1dt2 j1~ t12t2!^â&5e2a2~ t/tc211e2t/tc!^â&,
~6.21!

which is again an exact result@37#. In Eq. ~6.21!, we defined
a by

a5D0tc . ~6.22!

In this model, the TC and TCL decomposition mutua
play a complementary role. Namely, the TC decomposit
gives the solution in the frequency domain fors[ iv, while
the TCL decomposition gives the solution in time doma
We can flexibly choose the desired solution depending
our purpose.

VII. LOW FIELD RESONANCE IN QUANTUM
ENVIRONMENT

Next, we apply our formalism to a spin relaxation ph
nomenon caused by a nonadiabatic interaction with a qu
tum environment. Our whole system is specified by the f
lowing Hamiltonian:

H5H01H1 , ~7.1!

where

H05\v0Sz1HB , ~7.2!

H15\~v2S11v1S2!. ~7.3!

In Eqs.~7.2! and ~7.3!, HB andv6 denote the Hamiltonian
and the reservoir operators, respectively. We assume tha
reservoir is composed of a collection of harmonic oscillat
whereHB andv6 are of the form

HB5(
j

\v jbj
†bj , ~7.4!

v2[(
j

k jbj[~v1!†. ~7.5!

In these expressions,bj (bj
†) is an annihilation~creation!

operator of thej th oscillator andk j the coupling constan
between the relevant spin and thej th oscillator.
.

d

n

.
n

-
n-
l-

the
s

Now, we proceed to determine time evolution of a tran
verse component of the spin,S1[Sx1 iSy , in order to ana-
lyze the relaxation process. From Eqs.~2.10! and~2.16!, we
have

S1~ t !5U2~ t,t0!S15Û2~ t,t0!eiL0~ t2t0!S1

5eiv0~ t2t0!Û2~ t,t0!S1[eiv0~ t2t0!Ŝ1~ t !. ~7.6!

Then we obtain time evolution ofŜ1(t) by using the TC
decomposition in the HP, Eq.~5.1!:

d

dt
Ŝ1~ t !5Û2~ t,t0!Pi L̂1~ t !S11E

t0

t

dt K̂2~ t,t!S11Ĵ2~ t !.

~7.7!

According to Eq.~2.8!, the operatorL̂1(t) in Eq. ~7.7! is
explicitly given by (t0[0)

L̂1~ t !•5eiL0tL1~ t !e2 iL0t
•5

1

\
@e~ i /\!H0tH1e2~ i /\!H0t,•#

[@ṽ2~ t !S11ṽ1~ t !S2 ,•#, ~7.8!

where

ṽ1~ t !5(
j

e2 i ~v02v j !tk j* bj
†5ṽ2~ t !†. ~7.9!

From Eq.~C9! in Appendix C, the projection operatorP
is given by

P•5trB rB•5
1

ZB
trB e2bHB

•[^•&B , ~7.10!

with a partition functionZB and

b[
1

kBT
, ~7.11!

wherekB is the Boltzmann constant andT is the temperature
of the reservoir.

Our next task is to calculate an expansion series of
~7.7!. With the use of Eq.~5.4!,

E
0

t

dt K̂2~ t,t!S1

5E
0

t

dt1Û2~ t1 ,t0!^ i L̂1~ t1!i L̂1~ t !&APC S1

1 (
n53

` E
0

t

dt1E
0

t1
dt2¯E

0

tn21
dtn Û2~ tn21 ,t0!

3^ i L̂1~ tn!i L̂1~ tn21!¯ i L̂1~ t !&APC S1 , ~7.12!

each expansion term is obtained by evaluating the ‘‘antip
tial cumulants.’’

Explicitly, we find the lower order terms as follows:
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^ i L̂1~ t1!i L̂1~ t !&APC S1

5@^ i L̂1~ t1!i L̂1~ t !&B2^ i L̂1~ t1!&B^ i L̂1~ t !&B#S1

52@^ṽ1~ t !ṽ2~ t1!&B1^ṽ2~ t1!ṽ1~ t !&B

22^ṽ1~ t !&B^ṽ2~ t1!&B#S11@^ṽ1~ t !ṽ1~ t1!&B

1^ṽ1~ t1!ṽ1~ t !&B22^ṽ1~ t !&B^ṽ1~ t1!&B#S2

52@^ṽ1~ t !ṽ2~ t1!&B1^ṽ2~ t1!ṽ1~ t !&B#S1 . ~7.13!

In the last line of Eq.~7.13!, we used Eqs.~D2! and ~D10!.
As is seen from Appendix D, the odd-order moments d
appear for the harmonic oscillator bath. Therefore, the o
order ‘‘antipartial cumulants’’ also disappear:

^ i L̂1~ t2n!¯ i L̂1~ t1!i L̂1~ t !&APC S150 ~n>1!. ~7.14!

Then, the next order cumulant contributing to the time ev
lution of S1 is of the form
^ i L̂1~ t3!i L̂1~ t2!i L̂1~ t1!i L̂1~ t !&APC S15@^ i L̂1~ t3!i L̂1~ t2!i L̂1~ t1!i L̂1~ t !&2^ i L̂1~ t3!i L̂1~ t2!&^ i L̂1~ t1!i L̂1~ t !&#S1

52$^ṽ2~ t3!ṽ1~ t1!&B^ṽ1~ t !ṽ2~ t2!&B1^ṽ2~ t2!ṽ1~ t !&B^ṽ1~ t1!ṽ2~ t3!&B

1^ṽ2~ t2!ṽ1~ t1!&B^ṽ1~ t !ṽ2~ t3!&B1^ṽ2~ t1!ṽ1~ t2!&B^ṽ1~ t !ṽ2~ t3!&B

1^ṽ2~ t3!ṽ1~ t !&B^ṽ1~ t1!ṽ2~ t2!&B1^ṽ2~ t3!ṽ1~ t !&B^ṽ1~ t2!ṽ2~ t1!&B%S1 .

~7.15!

Thus, with the use of Eqs.~D19! and ~D20!, time evolution of^Ŝ1(t)& is given by

d

dt
^Ŝ1~ t !&52D2E

0

t

dt1 e2g~ t2t1!2 i ~ t2t1!~vo2vb!@112n~vb!#^Ŝ1~ t1!&1D4E
0

t

dt1E
0

t1
dt2E

0

t2
dt3 e2g~ t1t12t22t3!

3~8e2 i ~ t1t12t22t3!~vo2vb!14e2 i ~ t2t11t22t3!~vo2vb!n~vb!@11n~vb!#^Ŝ1~ t3!&

2D6E
0

t

dt1E
0

t1
dt2E

0

t2
dt3E

0

t3
dt4E

0

t4
dt5$e

2g~ t1t12t21t32t42t5!~16e2 i ~ t1t12t21t32t42t5!~vo2vb!

18e2 i ~ t2t11t21t32t42t5!~vo2vb!18e2 i ~ t1t12t22t31t42t5!~vo2vb!14e2 i ~ t2t11t22t31t42t5!~vo2vb!!

1e2g~ t1t11t22t32t42t5!~8e2 i ~ t1t12t21t32t42t5!~vo2vb!18e2 i ~ t2t11t21t32t42t5!vo2vb!

18e2 i ~ t1t12t22t31t42t5!~vo2vb!18e2 i ~ t2t11t22t31t42t5!~vo2vb!!n~vb!@11n~vb!#@112n~vb!#^Ŝ1~ t5!&1¯ .

~7.16!

In the same way as in Sec. VI, Eq.~7.16! is written in the form of the convolution type of integrals:

d

dt
^Ŝ1~ t !&52D2E

0

t

dt1 j1~ t2t1!h1~ t2t1!@112n~vb!#^Ŝ1~ t1!&1D4E
0

t

dt1E
0

t1
dt2E

0

t2
dt3 j1~ t2t1!j2~ t12t2!j1~ t22t3!

3@8h1~ t2t1!h2~ t12t2!h1~ t22t3!14h1~ t2t1!h1~ t22t3!#n~vb!@11n~vb!#^Ŝ1~ t3!&

2D6E
0

t

dt1E
0

t1
dt2E

0

t2
dt3E

0

t3
dt4E

0

t4
dt5$j1~ t2t1!j2~ t12t2!j1~ t22t3!j2~ t32t4!j1~ t42t5!

3@16h1~ t2t1!h2~ t12t2!h1~ t22t3!h2~ t32t4!h1~ t42t5!18h1~ t2t1!h1~ t22t3!h2~ t32t4!h1~ t42t5!

18h1~ t2t1!h2~ t12t2!h1~ t22t3!h1~ t42t5!14h1~ t2t1!h1~ t22t3!h1~ t42t5!#1j1~ t2t1!j2~ t12t2!

3j3~ t22t3!j2~ t32t4!j1~ t42t5!@8h1~ t2t1!h2~ t12t2!h1~ t22t3!h2~ t32t4!h1~ t42t5!18h1~ t2t1!

3h1~ t22t3!h2~ t32t4!h1~ t42t5!18h1~ t2t1!h2~ t22t3!h1~ t32t4!h1~ t42t5!18h1~ t2t1!h1~ t22t3!

3h1~ t42t5!#%n~vb!@11n~vb!#@112n~vb!#^Ŝ1~ t5!&1¯ , ~7.17!
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where we have defined

jn~ t ![e2ngt, ~7.18!

and

hn~ t ![e2ni~vo2vb!t. ~7.19!

In this way, we can successively determine the tim
dependent coefficients of^Ŝ1(t)&. With the Laplace trans-
form of Eq. ~7.17!, we found the absorption spectrum in
form similar to that of the continued fraction shown in th
preceding section. We plan to publish the details soon.
are satisfied here only with the result~7.17! as an example o
actual calculations showing the manipulating procedure
quantum systems.

VIII. DISCUSSION AND CONCLUDING REMARKS

In this paper, we formulated a unified and general meth
of projection operator for the dynamical variables. Witho
specifying the projection operator, a systematic formalism
established in order to obtain basic equations such as TC
TCL decompositions. The formalism enables us to have fl
ible treatment of problems including a time-dependent Lio
ville operator. Expansion formulas for both decompositio
are also obtained. These characteristic features of the for
ism are parallel to the one for the Liouville–von Neuma
equation. Moreover, we applied the formulas to the proble
of random frequency modulation and low field resonance

Now, we examine existing theories@27–30# from our
viewpoint. When the Liouville operatorL is time indepen-
dent, time evolution of an operatorA is determined by
eiL(t2t0). We have thus

]

]t
eiL~ t2t0!5eiL~ t2t0!iL, ~8.1!

which corresponds to Eq.~3.1!. Therefore, the main result
of Sec. III and Appendix A are transformed as follows:

T1@e2* t0

t dt8 i L̂1~ t8!#

T2@e* t0

t dt8 i L̂1~ t8!#

T1@e2* t0

t dt8Q̄i L̂1~ t8!#

T2@e* t0

t dt8 i L̂1~ t8!Q#
6 →H e2 iL~ t2t0!

eiL~ t2t0!

e2QiL~ t2t0!

eiLQ~ t2t0!

. ~8.2!

Further, if we specify the projection operatorP as

PX5~X,A†!~A,A†!21A, ~8.3!

in Eq. ~3.10!, we obtain the TC equation in@27#. In Eq.~8.3!,
the symbol~X,Y! is often defined by a canonical average:

~X,Y![
1

b E
0

b

dl^elHXe2lHY&. ~8.4!

As a result, an expansion formula for Mori’s TC equation
also obtained by specifying the projection operatorP as Eq.
~8.3! in Eq. ~5.1! with the replacement~8.2!. Moreover,
-

e

r

d
t
is
nd
x-
-
s
al-

s

when the application of the replacement~8.2! to Eq.~3.16! is
done, we have the TCL type equation derived by opera
manipulation in@28#.

There is another work where the TC and/or TCL equat
for a dynamical variableA(t) is obtained by defining projec
tion operators,

P•5(
k,l

Akgkl Tr$Bl•% ~8.5!

and

P̃•5(
k,l

Bkg̃kl Tr$Al•%, ~8.6!

for the HP and the SP, respectively@30,38#. In Eqs.~8.5! and
~8.6!, A andB are arbitrary operators. Keeping in mind th
both the basic equations for the HP and the SP should
the same mean value of an operatorA, they inferred the basic
equations for the HP from the TC and TCL equations in
SP with the use of the ‘‘dual’’ relations

Tr$X~PY!%5Tr$~P̃X!Y%,
~8.7!

Tr$X~P̃Y!%5Tr$~PX!Y%.

Especially in@30#, from our point of view, a sort of transcrip
tion rule was suggested for the system of a time-independ
Hamiltonian. Such a transcription rule coincides with ou
when the replacements~8.2! are made to the rules in Sec. IV

Another type of TCL equation was also proposed@39,40#:

P̃Ẇ~ t !52P̃iLP̃W~ t !2P̃iL$e2 iLtn1~ t !2121%P̃W~ t !

2P̃iLe2 iLtn1~ t !21Q̃W~ t0!, ~8.8!

where

n1~ t !5Q̃1P̃e2 iLt ~8.9!

511P̃~e2 iLt21!. ~8.10!

The TCL equation for a time-independent Liouville operat
which is obtained by applying the replacement~8.2! to Eq.
~A16!, is proved to be equivalent to Eq.~8.8! in @40#.

With the use of the rule of replacement~8.2! and rules in
Sec. IV, we can extend the TCL equation~8.8!.

~1! Application ~in the reversed direction! of Eq. ~8.2! to
Eq. ~8.8! enables us to find an equation for the tim
dependent Liouville operator:

P̃Ẇ~ t !52P̃iL~ t !P̃W~ t !

2P̃iL~ t !$U1~ t,t0!N1~ t !2121%P̃W~ t !

2P̃iL~ t !U1~ t,t0!N1~ t !21Q̃W~ t0!, ~8.11!

where

N1~ t !5Q̃1P̃U1~ t,t0! ~8.12!
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511P̃~U1~ t,t0!21!.
~8.13!

~2! With the aid of the rules in Sec. IV and replaceme
~8.2!, we immediately obtain an equation for a dynamic
variableA(t):

Ȧ~ t !5eiLtPiLA1eiLtP$n2~ t !21eiLt21% iLA

1Qn2~ t !21eiLtiLA, ~8.14!

where

n2~ t !5Q1eiLtP ~8.15!

511~eiLt21!P. ~8.16!

~3! Further use of the rules in Sec. IV gives the followin
equation forA(t):

Ȧ~ t !5U2~ t,t0!PiL~ t !A1U2~ t,t0!P
3$N2~ t !21U2~ t,t0!21% iL~ t !A

1QN2~ t !21U2~ t,t0!iL~ t !A, ~8.17!

where

N2~ t !5Q1U2~ t,t0!P ~8.18!

511@U2~ t,t0!21#P. ~8.19!

Thus the transcription rules are quite powerful in obtain
other types of equations when a single equation is know

Moreover, the formalism developed in this paper sho
not be restricted within the rigid framework of the Liouville
von Neumann equation and the Heisenberg equation of
tion. In other words, we may use the derived basic TC a
TCL decompositions flexibly. For instance, let us consid
an operator defined by

g~ t !5d„a2A~ t !…5eiLtd~a2A!, ~8.20!

wherea is one of the realization values of a system opera
A. The time evolution operator ofg(t) obeys Eq.~8.1! and
therefore we find

ġ~ t !5eiLtPiLd~a2A!1E
t0

t

dt eiLtPiLQeiLQ~ t2t!iL

3d~a2A!1F~ t !, ~8.21!

where

F~ t !5QeiLQtiLd~a2A!. ~8.22!

The quantityF(t) is regarded as a ‘‘fluctuating force’’ fo
the probability distribution operatorg(t). Equation~8.21! is
a microscopic version of the Boltzmann-Langevin equat
@41,42#.

Even for the Schro¨dinger equation

uċ~ t !&52
i

\
Huc~ t !&, ~8.23!
t
l

d

o-
d
r

r

n

we can use the method of projection operator for the HP: T
formal solution of Eq.~8.23! is obtained as

uc~ t !&5e2~ i /\!H~ t2t0!uc~ t0!& ~8.24!

to give the relation

]

]t
e2~ i /\!H~ t2t0!5e2~ i /\!H~ t2t0!S 2

i

\
HD , ~8.25!

which is analogous to Eq.~8.1!. When we define the projec
tion operator by

P5(
l

ul&^lu, ~8.26!

we immediately find the following wave equation with
‘‘fluctuating force’’ (t0[0):

uċl~ t !&52
i

\ (
l8

ucl8~ t !&Hl8,l

2
1

\2 (
l8

E
0

t

dtucl8~t!&^Qf l8~0!uQf l~ t2t!&

1
1

\
uQf l~ t !&, ~8.27!

where

uQf l~ t !&52 ie2 iQHQt/\QHul&. ~8.28!

This is the equation derived in@43#. In obtaining Eq.~8.27!,
we used the relation of the form

Qe2 iHQt/\5e2 iQHt/\Q ~8.29!

5Qe2 iQHQt/\Q.
~8.30!

Thus, we need not restrict ourselves to strict usage of ter
nologies for the Schro¨dinger picture and the Heisenberg pi
ture.

Next, we discuss the expansion formulas deduced fr
the basic equations. When we define the projection oper
appropriately, the expansion formulas are written in terms
certain kinds of cumulants. Especially, the cumulants for
TCL equation in the SP~see Appendix A! coincide with the
ones for stochastic equations@44–47#. They are called the
‘‘ordered cumulants’’ @45,46,23#. In this paper, using the
projection operator and expansion formulas flexibly, we ha
given a general and unified formalism in which dynamic
evolution of the observable itself is expressed by the cum
lant functions. The newly obtained formulas would be
practical use in treating actual problems.

Finally, we briefly comment on the low field resonan
model of Sec. VII where a quantum mechanical environm
is used. In the model, a spin of magnitude 1/2 interacts no
diabatically with the environment. When we rotate an axis
quantization in our model Hamiltonian, our system reduc
to the so-called Caldeira-Leggett model@48,49#. Then, the
basic equation in Sec. VII with higher order terms essentia
determines time evolution of the Caldeira-Leggett mo
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which has attracted considerable interest so far, though
quite difficult to find a solution of the model. We plan to giv
details of the calculations in the future.

We hope the formalism developed in this paper will
used to solve various actual problems in related fields as
as in different fields of physics.

APPENDIX A: BASIC EQUATIONS IN THE
SCHRÖDINGER PICTURE

In this appendix, we give a brief derivation of basic equ
tions in the SP in order to find a correspondence with
ones in the HP in Sec. II. With the use of Eqs.~2.1!, ~2.4!,
and~2.6!, time evolution of the operatorÛ1(t,t0) is found to
be

]

]t
Û1~ t,t0!52 i L̂1~ t !Û1~ t,t0!. ~A1!

Instead of Eqs.~3.4! and ~3.5!, we introduce

x̂1~ t !5P̃Û1~ t,t0! ~A2!

and

ŷ1~ t !5Q̃Û1~ t,t0!. ~A3!

Time evolution of these quantities is governed by the follo
ing equations:

d

dt
x̂1~ t !5P̃„2 i L̂1~ t !…x̂1~ t !1P̃„2 i L̂1~ t !…ŷ1~ t !

~A4!

and

d

dt
ŷ1~ t !5Q̃„2 i L̂1~ t !…x̂1~ t !1Q̃„2 i L̂1~ t !…ŷ1~ t !.

~A5!

These are derived by operatingP̃ and Q̃ on Eq. ~A1! from
the left.

(i) Time-convolution formula. Equation ~A5! is solved
to give

ŷ1~ t !5û1~ t,t0!Q̃1E
t0

t

dt û1~ t,t!Q̃„2 i L̂1~t!…x̂1~t!,

~A6!

where

û1~ t,t!5T1FexpS E
t

t

dt8Q̃„2 i L̂1~t8!…D G . ~A7!

Substitution of Eq.~A6! into Eq. ~A4! gives a time-
convolution type of equation
is

ll

-
e

-

d

dt
x̂1~ t !5P̃„2 i L̂1~ t !…x̂1~ t !

1E
t0

t

dt P̃„2 i L̂1~ t !…û1~ t,t!Q̃„2 i L̂1~t!…

3 x̂1~t!1P̃„2 i L̂1~ t !…û1~ t,t0!Q̃. ~A8!

With the use of Eqs.~A2! and ~A8!, we obtain

d

dt
P̃Ŵ~ t !5P̃„2 i L̂1~ t !…P̃Ŵ~ t !

1E
t0

t

dt P̃„2 i L̂1~ t !…û1~ t,t!Q̃„2 i L̂1~t!…

3P̃Ŵ~t!1P̃„2 i L̂1~ t !…û1~ t,t0!Q̃W~ t0!

~A9!

for a density operator

Ŵ~ t ![Û1~ t,t0!Ŵ~ t0!. ~A10!

(ii) Time-convolutionless formula.Using the relation

x̂1~t!5P̃Û1~t,t0!5P̃Û2~ t,t!~P̃1Q̃!Û1~ t,t0!,
~A11!

we have from Eq.~A6!

ŷ1~ t !5û1~ t,t0!Q̃1E
t0

t

dt û1~ t,t!Q̃„2 i L̂1~t!…P̃Û2~ t,t!

3$x̂1~ t !1 ŷ1~ t !%. ~A12!

Thus we obtain a solution forŷ1(t) as

ŷ1~ t !5Q1~ t !$û1~ t,t0!Q̃2@Q̂1~ t !2121# x̂1~ t !%,
~A13!

where

Q̂1~ t !5S 12E
t0

t

dt û1~ t,t!Q̃„2 i L̂1~t!…P̃Û2~ t,t! D 21

.

~A14!

From Eqs.~A4! and ~A13!, we have a time-convolutionles
type of equation of the form

d

dt
x̂1~ t !5P̃„2 i L̂1~ t !…x̂1~ t !

2P̃„2 i L̂1~ t !…$12Q̂1~ t !%x̂1~ t !

1P̃„2 i L̂1~ t !…Q̂1~ t !û1~ t,t0!Q̃. ~A15!

In the same way we obtained Eq.~A9!, we have
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d

dt
P̃Ŵ~ t !5P̃„2 i L̂1~ t !…P̃Ŵ~ t !

2P̃„2 i L̂1~ t !…$12Q̂1~ t !%P̃W̃~ t !

1P̃„2 i L̂1~ t !…Q̂1~ t !û1~ t,t0!Q̃W~ t0! ~A16!

for the density operatorŴ(t).

APPENDIX B: EXPANSION FORMULAS IN THE
SCHRÖDINGER PICTURE

The basic equations obtained in Appendix A are expan
to give some kinds of cumulants in this appendix.

(i) TC formula. Expanding the TC formula, namely,

d

dt
P̃Ŵ~ t !5P̃„2 i L̂1~ t !…P̃Ŵ~ t !

1E
t0

t

dtK̂1~ t,t!Ŵ~ t0!1Ĵ1~ t !, ~B1!

where

K̂1~ t,t![P̃„2 i L̂1~ t !…û1~ t,t!Q̃„2 i L̂1~t!…P̃Û1~t,t0!,

~B2!

with

Ĵ1~ t ![P̃„2 i L̂1~ t !…û1~ t,t0!Q̃W~ t0!, ~B3!

we obtain

E
t0

t

dt K̂1~ t,t!5~21!2E
t0

t

dt1 P̃F̂1,2~ t,t1!P̃Û1~ t1 ,t0!

1 (
n53

`

~21!nE
t0

t

dt1E
t0

t1
dt2¯E

t0

tn22
dtn21

3P̃F̂1,n~ t,t1 ,...,tn22 ,tn21!

3P̃Û1~ tn21 ,t0!, ~B4!

with

F̂1,2~ t,t1!5 i L̂1~ t !Q̃i L̂1~ t1!, ~B5!

F̂1,n~ t,t1 ,...,tn22 ,tn21!

5 i L̂1~ t !Q̃i L̂1~ t1!¯Q̃i L̂1~ tn22!Q̃i L̂1~ tn21! ~n>3!

~B6!

and

Ĵ1~ t !5S P̃„2 i L̂1~ t !…1~21!2E
t0

t

dt1 P̃F̂1,2~ t,t1!

1 (
n53

`

~21!nE
t0

t

dt1E
t0

t1
dt2¯E

t0

tn22
dtn21

3P̃F̂1,n~ t,t1 ,...,tn22 ,tn21!D Q̃Ŵ~ t0!. ~B7!
d

For the projection operatorP̃ defined by

P̃•5^^•&&, ~B8!

where^^•&& is a symbol to take a certain average, we obtai
kind of cumulant represented by

P̃F̂1,n~ t,t1 ,...,tn22 ,tn21!

[^ i L̂1~ t !i L̂~ t1!¯ i L̂1~ tn21!&PC ~n>2!.

~B9!

In Eq. ~B9!, the subscript PC indicates the cumulants cal
‘‘partial cumulants’’ @24#. In order to show the difference o
the chronological ordering structure between the SP and
HP explicitly, we write down a few lower order cumulants

^ i L̂1~ t !i L̂1~ t1!&PC5P̃i L̂1~ t !Q̃i L̂1~ t1!5^^ i L̂1~ t !i L̂1~ t1!&&

2^^ i L̂1~ t !&&^^ i L̂1~ t1!&&, ~B10!

^ i L̂1~ t !i L̂1~ t1!i L̂1~ t2!&PC

5P̃i L̂1~ t !Q̃i L̂1~ t1!Q̃i L̂1~ t2!

5^^ i L̂1~ t !i L̂1~ t1!i L̂1~ t2!&&

2^^ i L̂1~ t !&&^^ i L̂1~ t1!i L̂1~ t2!&&

2^^ i L̂1~ t !i L̂1~ t1!&&^^ i L̂1~ t2!&&

1^^ i L̂1~ t !&&^^ i L̂1~ t1!&&^^ i L̂1~ t2!&&.

~B11!

(ii) TCL formula. We also expand the TCL formula:

d

dt
P̃Ŵ~ t !5Ĉ1~ t !Ŵ~ t0!1 Ĵ1~ t !, ~B12!

where

Ĉ1~ t !5P̃„2 i L̂1~ t !…Q̂1~ t !P̃Û1~ t,t0!, ~B13!

Ĵ1~ t !5P̃„2 i L̂1~ t !…Q̂1~ t !û1~ t,t0!Q̃W~ t0!. ~B14!

Equation~B13! is expanded as

Ĉ1~ t !5P̃„2 i L̂1~ t !…(
n50

`

@ŝ1~ t !#nP̃Û1~ t,t0!

[ (
n51

`

~21!nĈ1,n~ t !P̃Û1~ t,t0!, ~B15!

where we introducedŝ1 as

ŝ1~ t ![E
t0

t

dt û1~ t,t!Q̃„2 i L̂1~t!…P̃Û2~ t,t!.

~B16!

The lower order terms of the expansion are explicitly giv
by
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Ĉ1,1~ t !5P̃i L̂1~ t !, ~B17!

Ĉ1,2~ t !5E
t0

t

dt1 P̃i L̂1~ t !Q̃i L̂1~ t1!5E
t0

t

dt1$^^ i L̂1~ t !i L̂1~ t1!&&2^^ i L̂1~ t !&&^^ i L̂1~ t1!&&%, ~B18!

Ĉ1,3~ t !5E
t0

t

dt1E
t0

t1
dt2$P̃i L̂1~ t !Q̃i L̂1~ t1!Q̃i L̂1~ t2!2P̃i L̂1~ t !Q̃i L̂1~ t2!P̃i L̂1~ t1!%

5E
t0

t

dt1E
t0

t1
dt2$^^ i L̂1~ t !i L̂1~ t1!i L̂1~ t2!&&2^^ i L̂1~ t !&&^^ i L̂1~ t1!i L̂1~ t2!&&2^^ i L̂1~ t !i L̂1~ t1!&&^^ i L̂1~ t2!&&

2^^ i L̂1~ t !i L̂1~ t2!&&^^ i L̂1~ t1!&&1^^ i L̂1~ t !&&^^ i L̂1~ t1!&&^^ i L̂1~ t2!&&1^^ i L̂1~ t !&&^^ i L̂1~ t2!&&^^ i L̂1~ t1!&&%.

~B19!
a
m
r
tio

c

or

:

f

II,
These cumulants are called ‘‘ordered cumulants’’~OC!
@45,46,23,24# and are denoted by

Ĉ1,1~ t ![^ i L̂1~ t !&OC,

Ĉ1,2~ t ![E
t0

t

dt1^ i L̂1~ t !i L̂1~ t1!&OC, ~B20!

Ĉ1,n~ t ![E
t0

t

dt1E
t0

t1
dt2¯E

t0

tn22
dtn21

3^ i L̂1~ t !i L̂1~ t1!¯ i L̂1~ tn21!&OC

~n>3! ~B21!

APPENDIX C: A RELATION BETWEEN PROJECTION
OPERATORS

Our formalism developed in this paper is free from
choice of projection operators. However, it is natural to i
pose a requirement thatP and P̃ give the same result fo
averaged quantities. That is, we require a certain rela
between the projection operatorsP and P̃ so as to yield the
same averaged value. With the use of such a relation, we
determine the projection operatorP consistent withP̃ and
vice versa keeping the idempotent relations

P 25P, ~C1!

and

P̃ 25P̃. ~C2!

For a system operatorA, an average is obtained in theSP
and theHP by Eq. ~2.9!:

^A& t5Tr AW~ t !5Tr A~ t !W~ t0![^A~ t !&. ~C3!

When a total system consists of a relevant system~S! and a
bath~B!, Tr in Eq. ~C3! is recognized as a trace operation f
the total system, namely,

Tr•[trB trS•. ~C4!
-

n

an

The left hand side of Eq.~C3! is manipulated as follows

^A& t5Tr AW~ t !5Tr ArB trB W~ t ![Tr A„P̃W~ t !…,
~C5!

where rB is the density operator for theB ~bath! system
alone, satisfying

trB rB51, ~C6!

and we have definedP̃ by

P̃•[rB trB•. ~C7!

In contrast, the right hand side of Eq.~C3! is rewritten as
follows:

^A~ t !&5Tr A~ t !W~ t0!5Tr AW~ t !

5Tr~ trB rBA!W~ t !

[Tr~PA!W~ t !, ~C8!

where we have also definedP by

P•[trB rB . ~C9!

Then, Eq.~C3! is equivalent to

Tr A„P̃W~ t !…5Tr~PA!W~ t !. ~C10!

This is the specialized version of the ‘‘dual’’ relation~8.7!
@30,38# obtained by requiring the same averaged value oA
both in theHP and theSP.

APPENDIX D: MOMENTS OF VARIABLES OF
QUANTUM ENVIRONMENT

In order to analyze the spin relaxation process in Sec. V
we have to evaluate moments of operators,ṽm(t) (m51
or 2!.

With the definition~7.10!,

Ṗ5trB rB•5
1

ZB
trB e2bHB

•[^•&B , ~D1!
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the lower order moments of the reservoir variablebj andbj
†

are found to be

^bj&B5^bj
†&B50, ~D2!

^bj
†bj&B5

1

el j21
[n~v j !, ~D3!

^bjbj
†&B511^bj

†bj&B5
1

12e2l j
[n̄~v j !, ~D4!

^bjbj&B5^bj
†bj

†&B50, ~D5!

with

l j[b\v j . ~D6!

Thus, for the reservoir variables,

ṽ1~ t !5(
j

e2 i ~v02v j !tk j* bj
†5ṽ2~ t !†, ~D7!

the relations~D2!–~D5! yield

^ṽ1~ t !ṽ2~ t1!&B

5(
j

(
l

k j* k le
2 i ~v02v j !t1 i ~v02v l !t1^bj

†bl&B

5(
j

uk j u2e2 i ~v02v j !~ t2t1!n~v j !, ~D8!

^ṽ2~ t !ṽ1~ t1!&B

5(
j

(
l

k jk l* ei ~v02v j !t2 i ~v02v1!t1^bjbl
†&B

5(
j

uk j u2ei ~v02v j !~ t2t1!n̄~v j ! ~D9!

and

^ṽ6~ t !ṽ6~ t1!&B50. ~D10!

For higher moments, we have

^w1w2¯wn&B5^w1w2&B^w3¯wn&B1^w1w3&B^w2¯wn&B

1¯1^w1wn&B^w2w3¯wn21&B ~n>3!,

~D11!

where

wn[ṽ1~ tn! or ṽ2~ tn!. ~D12!

Repeated use of Eq.~D11! gives the theorem due to~Wick!
Bloch and de Dominicis. When we also note Eq.~D2!, we
find that the moments of odd order disappear:

^w1w2¯wn&B50 ~ for odd n!. ~D13!
Now, we introduce a frequency distributionr~v! of the
coupling strengthk j . That is, the distribution is defined by

r~v![(
j

uk j u2d~v2v j !. ~D14!

Next, we assume the distribution to be a Lorentzian w
width g, centered atvb :

r~v![
g

p

D2

~v2vb!21g2 . ~D15!

Further, the average numbern(v j ) is assumed to be constan
around the frequency range wherer~v! changes appreciably

Thus we have

E
2`

`

e2 ivtr~v!dv5(
j

uk j u2e2 iv j t

5
gD2

p E
2`

`

e2 ivt
1

~v2vb!21g2 dv

5D2e2 ivbt2gutu. ~D16!

From Eq.~D16!, we find

(
j

uk j u2e2 iv j t5D2e2 ivbt2gutu, ~D17!

which gives a relation among characteristic parameters.
The correlation function forṽ6(t)’s is calculated as fol-

lows: Since we have a relation,

E
2`

`

e2 ivtr~v!n~v!dv5(
j

uk j u2e2 iv j tn~v j !

>(
j

uk j u2e2 iv j tn~vb!

5D2e2 ivbt2gutun~vb!, ~D18!

the correlation functions of the reservoir variable are fou
to be

^ṽ1~ t !ṽ2~ t1!&B5(
j

uk j u2e2 i ~v02v j !~ t2t1!n~v j !

>D2e2 i ~v02vb!~ t2t1!2gut2t1un~vb!

~D19!

and

^ṽ2~ t !ṽ1~ t1!&B5(
j

uk j u2ei ~v02v j !~ t2t1!n̄~v j !

>D2ei ~v02vb!~ t2t1!2gut2t1un̄~vb!.

~D20!
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